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The first-order magnetic-transition temperature in MnAs has been measured as a function of both in-
creasing and decreasing pressure. A critical pressure P,~4.6 kbar has been obtained for the range of sta-
bility of the hexagonal phase. The pressure hysteresis increases with decreasing temperatures. Cooling to
77°K under 5 kbar and then releasing pressure gives the B31 phase at atmospheric pressure, and it remains
stable on heating to 138°K, where there is an increase of magnetization of over a factor of 50. These data,
together with earlier magnetic measurements on the system MnAs,_.P,, demonstrate that the origin of the
first-order phase transition is a large exchange striction in the basal planes plus a volume-dependent Weiss
molecular field and manganese moment. This volume dependence is due to electron rearrangements associ-
ated with a hlgh-spm—to—low-spm transition. The sharpness of the high—spm-to—low-spm transition cannot

be accounted, for by variations in crystal-field splitting jw

with 'volume. It is suggested that a bandwidth is in-

creasing with decreasing volume through the maximum bandwidth for spontaneous band ferromagnetism.
The critical band appears to consist of ;. orbitals, which are primarily influenced by the Mn-Mn inter-

actions within basal planes.

I. INTRODUCTION

HE magnetic and structural properties of MnAs
are summarized in Table 1. The significant features
are: (1) There is a first-order phase change (latent
heat 1.79 cal/g) at the ferromagnetic Curie tempera-
ture T, from the hexagonal NiAs (B8;) structure at

T< T, to the orthorhombic MnP (B31) structure at .

T> T.. There is a discontinuous loss of ferromagnetism
at T,, and extrapolation to 7'> T, of magnetization
versus temperature with a Brillouin function gives an
extrapolated Curie temperature for the low-tempera-
ture phase T'.(ext)127°C. (2) At a T=2127°C, there
is a second-order B31=B8, transition. There is a maxi-
mum in the magnetic susceptibility at T, but MnAs is
not antiferromagnetic in the interval T.<T<T..
Rather there is a change in the magnitude of the man-
ganese moment (dp/d7>0) in this interval. (3) The
high-temperature (I'> T';) hexagonal phase exhibits a
Curie-Weiss behavior with a pe=4.95up and a 6,
10°C. Since any ferromagnetic temperature is always
smaller than 6y, this implies that the net ferromagnetic
coupling in this phase is smaller than that in the low-

temperature (7'<7,.) hexagonal phase, which has a

T.(ext)x127°C. (4) A discontinuity of 1.86% in the
density at T, is caused by an expansion in the basal
plane below 7. (5) The B31 structure is derived from
the B8, structure by a displacement of the manganese’
atoms out of the centers of symmetry of their arsenic
interstices to make one shortest manganese-arsenic
bond. Alternate [11, 0] rows of manganese are dis-
placed toward one-another primarily within the basal
planes, and along the hexagonal ¢ axis imetal atoms in
alternate basal planes are displaced in opposite direc-
tions, as shown in Fig. 1.

Three explanations of the first-order phase change at
T, have been suggested. (1) Kittel' developed a thermo-

* Operated with support from the U.S. Air Force.
1 C, Kittel, Phys. Rev. 120, 335 (1960).
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dynamic theory involving “exchange inversion” to
explain the antiferromagnetic2ferrimagnetic transition
in Mn, ,Cr,Sb and suggested it might be appllcable
to MnAs. The lack’of antiferromagnetic order in the
interval T, < T'< T, rules out this possibility. (2) Bean
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F16. 1. The orthorhombic B31 structure of MnP.

and Rodbell* proposed a thermodynamic theory in-
volving a net ferromagnetic exchange interaction that
is sensitive to molar volume, so that

Te=To[ 14+B(V—V0)/Vo]. (1)

This motivated DeBlois and Rodbell® to measure 7' as
a function of pressure P and applied field strength H
in the ranges 15<7'<65°C, 0< P<1 kbar, and 0<H<
110 kOe. They appeared to obtain a qualitative match
between theory and experiment. (3) Goodenough*
pointed out how the two transitions, B8;=B31 at T,

2 C. P. Bean and D. S. Rodbell, Phys. Rev. 126, 104 (1962).
(1'9&) W. DeBlois and D. W. Rodbell, Phys. Rev. 130, 1347

¢J. B. Goodenough, M.I.T. Lincoln Laboratory, Lexington,
Massachusetts, Technical Report No. 345, DDC 435758, 1964
(unpublished).
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